50 ksi Steel H-Pile Capacity

Project Title:
50 ksi Steel H-Pile Capacity

PennDOT Technical Advisor:
Charles Carey

Project Duration:
May 2014 – June 2015

Project Purposes:

Project purposes are to:

- Re-evaluate the adoption, with the objective of potentially extending the utilization of $F_y = 50$ ksi for the structural capacity of steel H-piles (so-called HP sections) for bridge foundations. Specific consideration is given to the current capacity equations, $P_n = 0.66A_sF_y$ and $P_r = 0.33A_sF_y$, with the objective of their revision; potentially permitting fewer piles for a foundation and an associated cost savings. The impact of any revisions, particularly upon foundation settlement will be evaluated. Evaluation will be based on AASHTO 2007, 2010 and 2012 criteria.

Anticipated Outcomes:

Anticipated project outcomes include:

- To evaluate the benefits and risks of increasing the current PennDOT structural capacity of $F_y = 50$ ksi steel H-piles for bridge foundations. Specific consideration is given to the current capacity equations, $P_n = 0.66A_sF_y$ and $P_r = 0.33A_sF_y$, with the objective of their revision; potentially permitting fewer piles per foundation and an associated cost savings. The risk potential of any revisions, particularly upon foundation settlement and long-term performance will be evaluated.

Implementation Plan:

The utilization of $F_y = 50$ ksi for the structural capacity of steel H-piles for bridge foundations was implemented with PennDOT Strike-Off-Letter 483-13-12, dated September 16, 2013. Section 6.15.1 of our DM-4 Structure publication has been modified to eliminate the specified steel yield strength of 36 ksi for steel H-piles. The Bridge Construction Standard, BC-757M, has been revised to coincide with the changes in DM-4. Publication 408, Highway Specifications, have been revised to include General Notes that are to be added to the bridge design plans.

Research Partner:
University of Pittsburgh

Principal Investigator:
Kent Harries

Project Cost:
$85,348.72